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Side-chain imidazole ligation (derived from histidine) pervades
the active-site chemistry of copper metalloproteins, including the
O,-carrier hemocyanin (Hc),! in addition to copper oxygenases
and oxidases.? In bioinorganic modeling studies, there has been
considerable recent progress in the characterization of synthetically
derived {Cu,—O,} species,?35 but these systems have generally
not utilized imidazole ligands. There is a good deal of interest
in polyimidazole copper complexation,%’ and here we report that
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a {Cu,-0,} species can be generated by reaction of O, with a
mononuclear Cu(I) complex possessing the simple unidentate
1,2-dimethylimidazole (L) ligand.

Following Sorrell’s observation that linear two-coordinate Cu(I)
complexes (with nitrogen heterocyclic ligands) are unreactive to
CO and O,,® we observed a similar phenomenon with [L,Cu')(PFg)
(1). However, when another equivalent of L is added to form
[LsCul](PFg) (2),!° derived solutions are extremely air sensitive.
By then employing low-temperature manipulations that have been
successfully applied to copper(I) complexes with aminoalkyl-
pyridine polydentate ligands,>!! we found that oxygenation of 2
at =90 °C in CH,Cl, (manometry: Cu:0, = 2.06 £ 0.02) gave
a stable, EPR-silent (77 K), intensely brown colored solution
[UV=-vis Ay, (6, Mt em™), 346 (sh, 2200),!2 450 (sh, 1450), 500
(1900), and 650 (600) nm], formulated as the peroxo—dicopper(II)
complex [{L;Cu};(0)]** (3) (Scheme 1).

Reactivity studies have been found to be useful in characterizing
copper—dioxygen complexes,!® and here they provide further ev-
idence for the presence of a bound nucleophilic peroxo moiety.
Reaction of tertiary phosphines PR; (R = Ph, Me) displaces the
bound O, ligand in 3, as judged by the qualitative detection of
dioxygen using pyrogallol,!! and by the isolation of [L;Cu(PR;)]*
(4)."*  Reaction of 3 with an excess of acid (HPF¢Et,0, 10
equiv/Cu) generates H;O, in ~75% yield as determined by io-
dometric titration. Also consistent with a peroxo—metal formu-
lation,'*® complex 3 undergoes an immediate reaction with CO,
at low temperature (-90 °C), which upon warming produces a
carbonato—dicopper(IT) complex [{L;Cu}5,(CO;)](PFy), (5).1
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Further striking evidence for the formulation of [{L,Cu},(0,)]**
(3) and verification that it contains a bound O,* ligand comes
from its reaction with TMPA (TMPA = tris[(2-pyridyl)-
methyl]amine), which is known to form a purple trans-p-1,2-
peroxo- bndged dicopper(1I) complex (6) when [(TMPA)Cul
(RCN)]* is reacted with O, at -80 °C.%!¢  We observe that
addition of TMPA (=90 °C) to the brown solution of 3 instan-
taneously transforms it to a purple solution with spectral features
identical with those of 6 (Scheme I); the yield of this conversion
is 81% based on the established spectrum of 6.!¢ We attribute
this “peroxide transfer” reaction to the lability of unidentate L
and the greater stability of the chelating TMPA ligand complex.
This may prove to be an example of a dynamic “self-assembly”
process!’ utilizing a “preformed” Cu,0, core.

The structure of [{L,Cu},(0,)]** (3) (CHZClz, 100 K) has been
probed by X-ray absorption spectroscopy.!®* Edge comparisons
with [L,Cul](PF¢) (2) indicate that 3 is a Cu(II) complex.!®
Simulation of the EXAFS' required four first-shell O/N ligands
to account for the intensity of the first shell in the FT, while outer
shell atom single and multiple scattering contributions from the
imidazole rings alone were not sufficient to account for the in-
tensity of the second shell in the FT. This extra intensity required
either a Cu-Cu interaction or an O atom at 2.85 A. The data
could be interpreted by either of two models (A or B) shown
herein.!® Structure A contains a bent p-n%n?-peroxo ligand, a
bridging mode seen in acetylene-bridged dicopper(I) complexes;?
structure A is also closely related to that proposed for other
{Cu,-0,} complexes previously described.> Kitajima and co-
workers have structurally characterized a dicopper(1I) complex
with a planar p-n%:n?-peroxo group. Model B possesses a planar
Cu(II) coordination and has a trans-u-1,2-peroxo group as is seen

in 6.2
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In conclusion, it is possible to generate a copper—dioxygen
complex by using a simple imidazole ligand, by sufficiently low-
ering the temperature, thus thwarting further irreversible reduction
(e.g., Cu:0, = 4:1)2 or disproportionation. This observation is
reminiscent of the behavior observed for simple iron(1I) porphyrins
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(21) At this time, we favor model B as the more plausible structure for
[lL,Cu}z(Ozs)]:+ (3) because it possesses a reactivity pattern similar to that
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chiometry of 4Cu:10,, suggesting a four-electron reduction of O, to give
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in their 1:1 O, binding.2* Interestingly, the obvious difference
in properties of [{L;Cu},(0,)]** (3) and those of oxyhemocyanin
(e-8s Amax = 350 nm (¢, 20000); Cu--Cu = 3.56 .K)"’ suggests
that 3 does not possess a {Cu,~O,} core structure like that observed
in the protein, again illustrating the multiple structures possible
for copper—dioxygen species.>!1*% Further studies will be directed
toward additional characterization of 3 and synthetic modifica-
tions.
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Optically active polymers possess many interesting properties
and have found applications in asymmetric syntheses, as chiral
adsorbents for separation of racemates, and in liquid crystals.!
A new approach to their synthesis would expand the scant arsenal
of existing methods.! Recently, lipase-catalyzed asymmetric
polycondensations have been explored for the production of op-
tically active polyesters,? but the reaction rates and molecular
weights obtained have been disappointing due to a plummeting
reactivity of the enzymes toward higher molecular weight sub-
strates.

Following our proposal to resolve racemic alcohols by using
them as nucleophiles in asymmetric transesterifications catalyzed
by lipases in neat organic solvents® (instead of conventional li-
pase-catalyzed, asymmetric hydrolysis of racemic esters in water“),
this new strategy has become popular for the resolution of racemic
alcohols,’ as well as such other nucleophiles as amines,® thiols,’
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